

Technologies for Exploring the Martian Subsurface

June 27-29, 2006
Sixth Annual NASA Earth Science Technology
Conference

Suparna Mukherjee

Jet Propulsion Laboratory

Technical Lead, MTP Subsurface Access

Contents

- Drilling on Mars
 - Challenges, Goals and Objectives
- Prototype systems
 - Shallow Drilling LSAS
 - Shallow Drilling MIDAS
 - Shallow Drilling Ultrasonic Sampler
 - Deep Drilling MPDS
 - Autonomy Testbed DAME
- Testing
- Field Test Update

Accessing the Martian Subsurface

Demonstrated capabilities

- Depth record (hard rock) MER (Mars Exploration Rover) RAT (Rock Abrasion Tool), 8.12 mm
- Depth record (regolith) Viking arm trenching, ~20 cm

On Deck

- Phoenix Lander: 2007 launch to the northern latitudes of Mars to dig in regolith (up to 1 m) to access and sample the permafrost surface (~1cm depth)
- Mars Science Laboratory: 2009 launch to the mid-latitudes and collect core samples of hard rock and regolith to depths of 10 cm below the surface

What's next?

- Increase access capability to the subsurface of Mars with lightweight, low-power systems that can provide high science-value samples.
- 20 m drill on a lander? 3 m drill on a rover?

Challenges to Drilling on Mars

Mars Technology Program

Spacecraft Constraints

- Low power and mass
- Limited platform stiffness and reaction forces
- Stowed volume

Environmental Conditions

- Mars surface ambient pressure and temperature
- Mars subsurface materials
 - hard rock
 - regolith imbedded with rocks
 - icy regolith and rock mixtures
- Minimal contamination (dry drilling)

Getting to depth in poorly characterized material

- Comminution (breaking the rock)
- Cuttings/debris removal from the borehole
- Autonomy what level is necessary?

Subsurface Access Goals

- The primary goal of the Mars Technology Program's Subsurface Access Base Technology Area is to develop sampling system technologies to satisfy future mission concepts
- To address varied mission needs, an NRA was released in 2003 that specifically requested automated systems that could sample
 - to 0.5 m in regolith
 - > 1 m in rock and regolith
 - 10-20 m in rock and regolith
- Missions of interest
 - Scouts
 - Astrobiology Field Laboratory
 - Deep Drill Mission

Selected Tasks

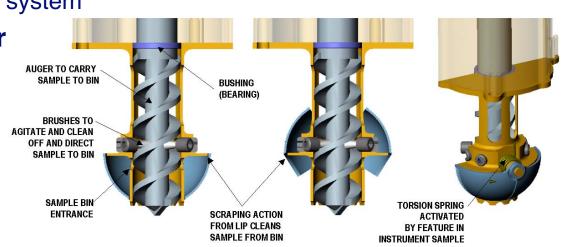
- Five tasks selected
 - 3 single-segment, shallow samplers
 - 2 multi-segment deeper drills
- MTP Performance Goals based on potential future missions

Depth	Power (W)	Mass (kg)	S t o w e d Volume (cm)	W O B (weight on bit)
Shallow (< 1 m)	30	4	50 x 25 x 25	<80 N
Deep (< 20 m)	80	40	100 x 100 x 100	<800 N

Some Autonomy Definitions

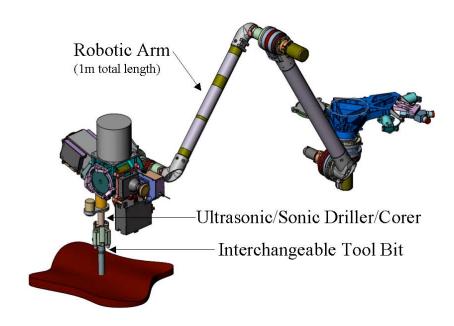
Mars Technology Program

For drilling, sampling acquisition & delivery:


	·		Fault Re	December (Nets)			
۲	ategory	Detection	Diagnosis	Prognosis	Remediation	Description/Notes	
		.	Evaluate state of system	None	None	Automated Open loop control for drilling, sample acquisition and delivery	
			Evaluate type of drilling fault	None	Abort drilling operations and put system in "safe" standby	Semi-autonomous Some closed loop control: closed-loop drilling control with respect to drill rate and platform reaction forces	
		condition(s)	Evaluate type of drilling or sampling fault	None	Abort drilling and sampling operations and put system in "safe" standby	Semi-autonomous Primarily closed loop control: closed-loop drilling, sample acquisition and delivery	
		Identify off-nominal condition(s)	Evaluate type of fault	None	Recover from fault and continue drilling/sampling operations	Autonomous Primarily closed loop control; failure diagnosis and recovery for drilling and sampling	
		Identify off-nominal condition(s)	Evaluate type of fault	Predict future off- nominal condiditons	continue drilling/sampling	Fully autonomous Closed loop control; failure diagnosis, failure recovery/avoidance, and performance optimization for drilling and sampling	

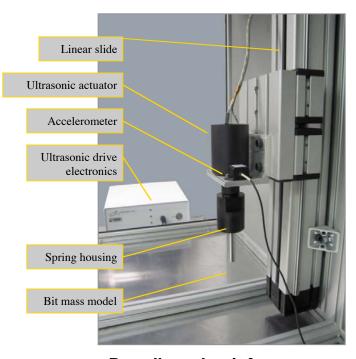
"MER-like" Rock Abrasion Tool autonomy

Low Force Sample Acquisition System (LSAS)


- PI: Scott Stanley, Alliance Spacesystems, Inc
- **Objective:** Collect 1.5 cm³ powdered rock sample from the near surface (2 cm depth)
- Features/Accomplishments
 - Rotary percussive, single-segment drill
 - Low force drilling
 - Low mass, single-actuator system
- Prototype currently under relevant environment testing at JPL

Mars Integrated Drilling and Sampling (MIDAS)

S)


- PI: Scott Stanley, Alliance Spacesystems, Inc
- Objective: Collect unconsolidated regolith cores (1 cm diameter) from up to 0.5m depths
- Features/Accomplishments
 - Rotary percussive, single-segment drill
 - Arm-mounted, using MER robotic arm spare hardware
 - Interchangeable bit capability
- Prototype unit ready for relevant environment testing October 2006

Ultrasonic Sampler for Mars

- PI: Paul Bartlett, Honeybee Robotics
- Objective: Collect 0.5 cm³ of unconsolidated material from various depths up to 0.5 m below the surface
- Features/Accomplishments
 - Rotary percussive, single-segment drill
 - Low force (<20 N) comminution of hard rock achieved with ultrasonic actuator
 - Development of closed loop penetration algorithm to increase drilling efficiency
- Prototype unit ready for relevant environment testing December 2006

Breadboard unit for algorithm development

Modular Planetary Drill System (MPDS)

- PI: Jose Guerrero, Swales Aerospace
- Objective: Drill to 20 m and collect cores
 (1.5 cm diameter) and cuttings from hard
 rock and unconsolidated mixtures of rock,
 regolith and ice.
- Features/Accomplishments
 - Rotary, multi-segmented drill
 - Low power drilling is achieved in hard rock by removing cores and cuttings via wireline without removal of drill segments from the borehole
- Test unit completing hard basalt field test

Drilling Automation for Mars Exploration (DAME)

- PI: Brian Glass, NASA-Ames
- Objective: Develop automation to identify and recover from drill failures in augering drills
- Features/Accomplishments
 - Rotary, multi-segmented drill
 - Drilled 2.2 m into permafrost and breccia in two field seasons at Haughton Crater with < 200 W, demonstrating 8 drill faults during 50 hours of operation
- Final field season, 2006

DAME Drill testing in the Arctic

Benchmark Testing

- Performance can be highly dependent on specific test parameters such as platform compliance and target material properties
- A shallow testbed is being developed at JPL to evaluate < 2 m sampling systems on a common platform in Mars analog materials
- We plan to begin blind tests for each of the shallow sampling tasks by the end of FY07
- Benchmark testing of this kind will allow mission planners, technologists and the science community to compare the performance and evaluate the applicability of particular sampling systems to future missions

- Evaluating the performance of deeper (>3 m) systems is more difficult as relying on lab testing alone becomes impractical (and expensive)
- A series of field tests has been recommended for the nearterm development of 10-20 m class of drills:
 - Homogeneous Sandstone Gila Bend, AZ
 - Test conducted Dec 2002
 - Hard basalt (homogeneous) Idaho Falls, ID
 - Feb/Mar 2006 Test completed today!
 - lcy rock/regolith mixtures (permafrost)
 - Proposed for Alaska, Spring 2007
 - Heterogeneous mixture (dry) TBD

Basalt Field Test

Mars Technology Program

Justification

- To demonstrate a more flight-like drill (than Sandstone Field Test in 2002) at full depth (20 m) in material at the high end of the compressive strength range expected on Mars. Provides valuable "shakeout" of overall system.
- Need to demonstrate semi-autonomous (A1) drilling

Duration

Two weeks: February 21 - March 6, 2006

Subsurface environment

- Material: Columbia River Basalt
- Location: Idaho National Lab (INL); Idaho Falls, ID

Borehole

One 20-meter hole (minimum)

Power

Demonstrate drilling & sampling at flight-like
 (<100 W) power levels

Basalt Field Test - Swales Team

Mars Technology Program

Swales Aerospace (under 2003 NRA award)

- Multi-segmented, coring drill
- Reached depth of 2.1 m total, ~1.7 m in basalt
- Demonstrated low power drilling (<90 W for cutting basalt)
- Successfully tested new bit design & magnetic joint design

Recovered cores and cuttings

Basalt Field Test - Raytheon-UTD Team

Mars Technology Program

Ratheon UTD (just after completion of SBIR Phase 2)

- Tethered drill (Automated Drill Corer, ATC)
- Easy setup; started drilling quickly
- Reached maximum, depth of 78 cm; ~ 3 cm in basalt, using
 60 W
- Became stuck on Day 7, while augering packed, wet cuttings

The field testing of the ATC highlighted the importance of:

- Optimizing the auger design to prevent clogging when conveying cuttings that a prone to caking.
- Incorporating a second anchor module to provide crawler-like locomotion for off-vertical boreholes
- Incorporating a back-reaming capabilities
- Developing a near-surface casing to stabilize the borehole entry

Tethered Drill, Raytheon-UTD

Development Paths

- Different development paths exist for each depth of drilling/sampling
 - Shallow (1-3 m)
 - Deep (5-50 m)
 - Deeper (>50 m)
- Actual schedule and cost of development is highly dependent on specific performance goals and validation techniques
- Combinations of analytical modeling, laboratory testing and field testing will likely be necessary to validate all of these sampling systems